Color-Critical Graphs and Hypergraphs with Few Edges: A Survey

نویسندگان

  • A. KOSTOCHKA
  • A. Kostochka
چکیده

A hypergraph is color-critical if deleting any edge or vertex reduces the chromatic number; a color-critical hypergraph with chromatic number k is k-critical. Every k-chromatic hypergraph contains a k-critical hypergraph, so one can study chromatic number by studying the structure of k-critical (hyper)graphs. There is vast literature on k-critical graphs and hypergraphs. Many references can be found in [23, Chapters 5 and 1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color-critical graphs and hypergraphs with few edges and no short cycles

We give constructions of color-critical graphs and hypergraphs with no cycles of length 5 or shorter and with relatively few edges. AMS classification: Primary 05C15; Secondary 05C35

متن کامل

Conflict-Free Colourings of Uniform Hypergraphs With Few Edges

A coloring of the vertices of a hypergraph H is called conflict-free if each edge e of H contains a vertex whose color does not get repeated in e. The smallest number of colors required for such a coloring is called the conflict-free chromatic number of H, and is denoted by χCF (H). Pach and Tardos studied this parameter for graphs and hypergraphs. Among other things, they proved that for an (2...

متن کامل

Covering complete partite hypergraphs by monochromatic components

A well-known special case of a conjecture attributed to Ryser (actually appeared in the thesis of Henderson [7]) states that k-partite intersecting hypergraphs have transversals of at most k−1 vertices. An equivalent form of the conjecture in terms of coloring of complete graphs is formulated in [1]: if the edges of a complete graph K are colored with k colors then the vertex set of K can be co...

متن کامل

On the Number of Edges in Colour-Critical Graphs and Hypergraphs

A (hyper)graph G is called k-critical if it has chromatic number k, but every proper sub(hyper)graph of it is (k− 1)-colourable. We prove that for sufficiently large k, every k-critical triangle-free graph on n vertices has at least (k−o(k))n edges. Furthermore, we show that every (k+1)-critical hypergraph on n vertices and without graph edges has at least (k−3/ 3 √ k)n edges. Both bounds diffe...

متن کامل

Spectrum of mixed bi-uniform hypergraphs

A mixed hypergraph is a triple H = (V, C,D), where V is a set of vertices, C and D are sets of hyperedges. A vertex-coloring of H is proper if C-edges are not totally multicolored and D-edges are not monochromatic. The feasible set S(H) of H is the set of all integers, s, such that H has a proper coloring with s colors. Bujtás and Tuza [Graphs and Combinatorics 24 (2008), 1–12] gave a character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011